Monomial Resolutions of Admissible Representations

Victor Snaith

April 2015

For details see post-retirement math on webpage: http://victor-snaith.staff.shef.ac.uk

§1: A motivating remark

The Langlands programme (LP) concerns topological groups G acting linearly on vector spaces V over k, algebraically closed field (not necessarily characteristic zero).

What sort of G? (i) Locally p-adic Lie groups like $GL_n\mathbb{Q}_p$, (ii) adèlic Lie groups $GL_2\mathbb{A}_{\mathbb{Q}}$ and (iii) fundamental groups of schemes.

What sort of representations V? Respectively: (i) admissible (i.e. generalising f.d. reps of finite groups), (ii) automorphic (i.e. restricted tensor products of admissibles twisted by algebras of differential operators "at ∞ ", (iii) of cohomological origin.

LP - what's all the fuss?

LP predicts bijections between representation theoretic data in important but previously unrelated areas:

E.g. K a local (or adèles of a number) field $\left\{ \begin{array}{l} admissible \ irreducible \ reps \ V \ of \ GL_nK \\ L-functions \ and \ epsilon \ factors \ of \ V \end{array} \right\}$ $\pi \ \updownarrow$ $\left\{ \begin{array}{l} Weil-Deligne \ reps \ \pi(V) \ of \ K, \ \dim(\pi(V))=n \\ L-functions \ and \ epsilon \ factors \ of \ \pi(V) \end{array} \right\}$

ADVERT BREAK:

Remark: When n=1 this bijection is the class field theory of Takagi and Artin.

Remark: LP for number fields implies inter alia Artin's conjecture on the holomorphicity of L-functions (in analytic number theory this is often a substitute for the Riemann Hypothesis).

ADVERT BREAK OVER:

Fix G a locally p-adic Lie group e.g. $GL_n\mathbb{Q}_p$

 $Z(G) \leq H \leq G$ a compact, open modulo the centre subgroup

 $\phi: H \longrightarrow k^* = k - \{0\}$ continuous character i.e. $\phi \in \widehat{H}$, group of cts characters

Fix $\phi: Z(G) \longrightarrow k^*$, a central character

We have the category $_{k[G,\underline{\phi}]}$ mod of continuous k-representations on which the centre acts via $\underline{\phi}$.

We also have $_{k[G,\phi]}\mathrm{mon}$ an additive category

CONSTRUCTED FROM 1-DIMENSIONAL DATA.

Theorem 1

There is a functorial embedding - called the monomial resolution - of $_{k[G,\underline{\phi}]}$ mod into the derived category of $_{k[G,\phi]}$ mon.

Theorem 2

Theorem 1 has an analogue for

- (i) automorphic representations and
- (ii) Weil-Deligne representations.

§2: Monomial resolutions

Admissible: restriction to compact mod centre subgroups H is countable direct sum of finite dimensional irreducibles with finite multiplicity (slightly different when char(k) > 0).

e.g. $H = K^* \cdot GL_n\mathcal{O}_K \subset GL_nK$ where \mathcal{O}_K denotes the valuation ring of local field K.

Let $\mathcal{M}_{G,\underline{\phi}}$ denote the set of pairs (J,ϕ) with $J\subseteq G$ a compact open modulo the centre subgroup containing Z(G), $\phi\in \widehat{J}$ with $\mathrm{Res}_{Z(G)}^J(\phi)=\underline{\phi}$.

The set $\mathcal{M}_{G,\underline{\phi}}$ is a G-poset via G-conjugation

Associated to (J,ϕ) is the k[J]-module k_{ϕ} given by k on which J acts via $j(z) = \phi(j) \cdot z$

An G-Line Bundle* is $M \in_{k[G,\underline{\phi}]}$ mod together with a decomposition into the direct sum of one-dimensional subspaces

$$M = \bigoplus_{\alpha \in \mathcal{A}} M_{\alpha}$$

 M_{α} 's are permuted by the G-action and the stabiliser M_{α} is H_{α} , compact modulo the centre

 H_{α} acts on M_{α} via a character ϕ_{α}

The M_{α} 's are called the Lines of M.

The pair $(H_{\alpha}, \phi_{\alpha})$ is called the stabilising pair of M_{α} .

^{*}Auto-referential apology: Apologies to topologists. Robert Boltje coined the term when introducing $_{k[G]}$ mon for finite G.

For a pair $(H,\phi)\in\mathcal{M}_{G,\underline{\phi}}$ the G-Line Bundle denoted by $\underline{\mathrm{Ind}}_H^G(k_\phi)$ is given by the compactly induced representation $c-\mathrm{Ind}_H^G(k_\phi)$. As in the finite case has a k-basis indexed by G/H.

For each $(J,\phi)\in\mathcal{M}_{G,\phi}$ set

$$M^{((J,\phi))} = \bigoplus_{\alpha \in \mathcal{A}, \ (J,\phi) \leq (H_{\alpha},\phi_{\alpha})} M_{\alpha},$$

the (J, ϕ) -fixed points of M.

A morphism

$$f: M = \bigoplus_{\alpha \in \mathcal{A}} M_{\alpha} \longrightarrow \bigoplus_{\beta \in \mathcal{B}} M'_{\beta} = M'$$

between two G-Line Bundles is a continuous k[G]-module homomorphism such that

$$f(M^{((J,\phi))}) \subseteq (M')^{((J,\phi))}$$

for all $(J, \phi) \in \mathcal{M}_{G, \underline{\phi}}$.

This defines an additive (but NOT abelian) category $_{k[G,\phi]}$ mon

A monomial complex is a chain complex of continuous k[G]-modules

$$C_*: \ldots \xrightarrow{d} C_n \xrightarrow{d} C_{n-1} \xrightarrow{d} C_{n-2} \xrightarrow{d} \ldots$$

in which each C_n is an G-Line Bundle and each d is a morphism.

Let $V \in_{k[G,\phi]} \text{mod}$, not necessarily irreducible.

$$V^{(H,\phi)} = \{ v \in V \mid h(v) = \phi(h) \cdot v \text{ for all } h \in H \}$$

Remark: If V is an automorphic representation of $GL_2\mathbb{A}_{\mathbb{Q}}$, $H=\Gamma_0(N)$ and ϕ is a Hecke character of level N then spaces of modular forms give examples of $V^{(H,\phi)}$'s.

A chain complex of continuous k[G]-modules

$$\dots \xrightarrow{d} C_n \xrightarrow{d} C_{n-1} \xrightarrow{d} \dots \xrightarrow{d} C_0 \xrightarrow{\epsilon} V \longrightarrow 0$$

is called a monomial resolution of V if:

 C_n a G-Line Bundle, d a morphism

$$\epsilon(C_0^{((J,\phi))}) \subseteq V^{(J,\phi)} \ (J,\phi) \in \mathcal{M}_{G,\phi}$$

and for all $(J,\phi) \in \mathcal{M}_{G,\phi}$

$$\dots \xrightarrow{d} C_1^{((J,\phi))} \xrightarrow{d} C_0^{((J,\phi))} \xrightarrow{\epsilon} V^{(J,\phi)} \longrightarrow 0$$

is an exact complex of k-modules.

Monomial resolutions are unique up to chain homotopy (need more for e.g. GL_nK , n > 2)

§3: The bar-monomial resolution

Let G be a group which is finite modulo the centre with central character ϕ .

 \mathcal{V} : forgetful functor (Line Bundles to G-modules)

$$\mathcal{A}_S = \operatorname{Hom}_{k[G,\phi]-mon}(S,S)$$

$$W_{S,i} = \operatorname{Hom}_{k[G,\underline{\phi}]-mod}(\mathcal{V}(S),V) \otimes \mathcal{A}_{S}^{\otimes^{i}},$$

 $W_{S,i} \otimes S$ has left G-action only on S-factor (Lines = (k-basis) \otimes Line of S)

$$(W_{S,*}\otimes S)^{((H,\phi))}$$
 well-defined!

left $k[G, \underline{\phi}]$ -monomial morphisms, defined by the obvious formulae,

$$d_0, d_1, \ldots, d_i : W_i \otimes S \longrightarrow W_{i-1} \otimes S$$

for $i \geq 1$

left $k[G,\phi]$ -module homomorphism

$$\epsilon: \operatorname{Hom}_{k[G,\phi]-mod}(\mathcal{V}(S),V) \otimes S \longrightarrow V$$

given by $\epsilon(f \otimes s) = f(s)$. Let d be given by the alternating sum $d = \sum_{j=0}^{i} (-1)^{j} d_{j}$.

Choose S to be the direct sum of one copy of each $\operatorname{Ind}_H^G(\phi)$ for $(H,\phi) \in G \backslash \mathcal{M}_{G,\phi}$.

Theorem 3 (The bar-monomial resolution)

$$W_{S,*}(S)\otimes S\stackrel{\epsilon}{\longrightarrow} V\longrightarrow 0$$

is a canonical left $k[G, \underline{\phi}]$ -monomial resolution of V, which is natural with respect to homomorphisms of groups G and V.

Proved using a full embedding into the category of \mathcal{A}_S -modules. \square

§4: Sketch proof of Theorem 1

Start with V and its restrictions to compact open modulo the centre subgroups.

Tammo tom Dieck gives us: a canonical simplicial complex $\underline{E}(G,\mathcal{C})$ on which G acts simplicially in such a way that, for every compact modulo the centre subgroup $H\subseteq G$, the H-fixed subcomplex $\underline{E}(G,\mathcal{C})^H$ is non-empty and contractible.

E.g. $G = GL_nK$, K local then $\underline{E}(G, \mathcal{C})$ is the Bruhat-Tits building.

Promote the bar-monomial resolution to a local system of monomial complexes on $\underline{E}(G,\mathcal{C})$. Together with the internal differentials from $\underline{E}(G,\mathcal{C})$ construct a double-complex in $_{k[G,\phi]}$ mon.

The total complex is the monomial resolution.

Further aspects of monomial resolutions:

- (i) Hecke operators and monomial resolutions
- (ii) L-functions, epsilon factors and Tate's thesis applied Line by Line
- (iii) Galois base change and Shintani's correspondence

To keep it short let's look at (i): The monomial resolution of an automorphic representation gives exact sequences

$$\dots \xrightarrow{d} C_1^{((J,\phi))} \xrightarrow{d} C_0^{((J,\phi))} \xrightarrow{\epsilon} V^{(J,\phi)} \longrightarrow 0$$

The $V^{(J,\phi)}$ include spaces of classical modular forms on which the famous Hecke operators act.

$$[JgH]: V^{(H,\phi)} \longrightarrow V^{(J,\phi')}$$

The [JgH]'s originate in the Mackey double coset formula (DCF)

$$\operatorname{Res}_J^G\operatorname{Ind}_H^G(k_\phi) \cong \oplus_{z \in J \setminus G/H} \operatorname{Ind}_{J \cap zHz^{-1}}^J((z^{-1})^*(k_\phi))$$

from the term corresponding to JgH.

DCF applies to $\operatorname{Res}_{J}^{G}\operatorname{Ind}_{H}^{G}(k_{\phi})$.

Therefore often these extend canonically (up to homotopy) to the entire exact sequence!